《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 https://www.iocoder.cn/Fight/Queries-increased-by-200-times,-ClickHouse-you-deserve/ 「芋道源码」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注**微信公众号:【芋道源码】**有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

大家好,我是艿艿。

今儿,给大家分享一个,近年来备受关注的开源列式数据库,主要用于数据分析领域。目前国内社区火热,各个大厂纷纷跟进大规模使用:

一、ClickHouse 是什么?

ClickHouse 是 Yandex(俄罗斯最大的搜索引擎)开源的一个用于实时数据分析的基于列存储的数据库,其处理数据的速度比传统方法快 100-1000 倍。

ClickHouse 的性能超过了目前市场上可比的面向列的 DBMS,每秒钟每台服务器每秒处理数亿至十亿多行和数十千兆字节的数据。

我们首先理清一些基础概念

OLTP:是传统的关系型数据库,主要操作增删改查,强调事务一致性,比如银行系统、电商系统

OLAP:是仓库型数据库,主要是读取数据,做复杂数据分析,侧重技术决策支持,提供直观简单的结果

接着我们用图示,来理解一下列式数据库行式数据库区别

在传统的行式数据库系统中(MySQL、Postgres和MS SQL Server),数据按如下顺序存储:

图片

在列式数据库系统中(ClickHouse),数据按如下的顺序存储:图片

两者在存储方式上对比:

图片

以上是ClickHouse基本介绍,更多可以查阅官方手册

https://clickhouse.tech/docs/zh/

二、业务问题

业务端现有存储在Mysql中,5000万数据量的大表及两个辅表,单次联表查询开销在3min+,执行效率极低。经过索引优化、水平分表、逻辑优化,成效较低,因此决定借助ClickHouse来解决此问题

最终通过优化,查询时间降低至1s内,查询效率提升200倍!

希望通过本文,可以帮助大家快速掌握这一利器,并能在实践中少走弯路。

三、ClickHouse实践

1.Mac下的Clickhouse安装

我是通过docker安装,也可以下载CK编译安装,相对麻烦一些。

2.数据迁移:从Mysql到ClickHouse

ClickHouse支持Mysql大多数语法,迁移成本低,目前有五种迁移方案:

  • create table engin mysql,映射方案数据还是在Mysql
  • insert into select from,先建表,在导入
  • create table as select from,建表同时导入
  • csv离线导入
  • streamsets

选择第三种方案做数据迁移:

CREATE TABLE [IF NOT EXISTS] [db.]table_name ENGINE = Mergetree AS SELECT * FROM mysql('host:port', 'db', 'database', 'user', 'password')

3.性能测试对比

类型 数据量 表大小 查询速度
Mysql 5000万 10G 205s
ClickHouse 5000万 600MB 1s内

4.数据同步方案

临时表

图片

新建temp中间表,将Mysql数据全量同步到ClickHouse内temp表,再替换原ClickHouse中的表,适用数据量适度,增量和变量频繁的场景

synch

图片

开源的同步软件推荐:synch

https://github.com/long2ice/synch/blob/dev/README-zh.md

原理是通过Mysql的binlog日志,获取sql语句,再通过消息队列消费task

5.ClickHouse为什么快?

  • 只需要读取要计算的列数据,而非行式的整行数据读取,降低IO cost
  • 同列同类型,有十倍压缩提升,进一步降低IO
  • clickhouse根据不同存储场景,做个性化搜索算法

四、遇到的坑

1.ClickHouse与mysql数据类型差异性

用Mysql的语句查询,发现报错:

图片

解决方案

LEFT JOIN B b ON toUInt32(h.id) = toUInt32(ec.post_id),中转一下,统一无符号类型关联

2.删除或更新是异步执行,只保证最终一致性

查询CK手册发现,即便对数据一致性支持最好的Mergetree,也只是保证最终一致性:

图片

如果对数据一致性要求较高,推荐大家做全量同步来解决

五、总结

通过ClickHouse实践,完美的解决了Mysql查询瓶颈,20亿行以下数据量级查询,90%都可以在1s内给到结果,随着数据量增加,ClickHouse同样也支持集群,大家如果感兴趣,可以积极尝试 : )

文章目录
  1. 1. 一、ClickHouse 是什么?
  2. 2. 二、业务问题
  3. 3. 三、ClickHouse实践
    1. 3.0.1. 1.Mac下的Clickhouse安装
    2. 3.0.2. 2.数据迁移:从Mysql到ClickHouse
    3. 3.0.3. 3.性能测试对比
    4. 3.0.4. 4.数据同步方案
    5. 3.0.5. 5.ClickHouse为什么快?
  • 4. 四、遇到的坑
    1. 4.0.1. 1.ClickHouse与mysql数据类型差异性
    2. 4.0.2. 2.删除或更新是异步执行,只保证最终一致性
  • 5. 五、总结