⭐⭐⭐ Spring Boot 项目实战 ⭐⭐⭐ Spring Cloud 项目实战
《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 zhuanlan.zhihu.com/p/616504594 「Uranus」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注**微信公众号:【芋道源码】**有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

LLM 这两周不断带给我们震撼与惊喜。GPT-4 的发布让大家对 LLM 的想象空间进一步扩大,而这些想象在本周眼花缭乱的 LLM 应用发布中逐渐成为现实,下面分享一位朋友训练ChatGPT的完整方案,供大家参考~

LLM 相关的开源社区这两周涌现了很多优秀的工作,吸引了很多人的关注。其中,我比较关注的是 Stanford 基于 LLaMA 的 Alpaca 和随后出现的 LoRA 版本 Alpaca-LoRA。原因很简单,便宜

Alpaca 宣称只需要 600$ 不到的成本(包括创建数据集),便可以让 LLaMA 7B 达到近似 text-davinci-003 的效果。而 Alpaca-LoRA 则在此基础上,让我们能够以一块消费级显卡,在几小时内完成 7B 模型的 fine-turning。

下面是开源社区成员分享的可以跑通的硬件规格及所需时间:

根据大家分享的信息,fine-tune 7B 模型仅需要 8-10 GB vram。因此我们很有可能可以在 Google Colab 上完成你所需要的 fine-tune!

那么,说干就干!

为什么要训练自己的 ChatGPT ?

我想到了以下的方面:

  • 对我个人而言,这非常非常 cooooool !
  • 让模型能够讲我熟悉的语言
  • 让模型替我写注释和测试代码
  • 让模型学习产品文档,帮我回答用户提出的小白问题
  • ...

计划

那么,为了训练自己的 Chat我们需要做那些事儿呢? 理论上需要如下步骤:

第一步:准备数据集

fine-tune 的目标通常有两种:

  • 像 Alpaca 一样,收集 input/output 生成 prompt 用于训练,让模型完成特定任务
  • 语言填充,收集文本用于训练,让模型补全 prompt。

以第一种目标为例,假设我们的目标是让模型讲中文,那么,我们可以通过其他 LLM (如 text-davinci-003)把一个现有数据集(如 Alpaca)翻译为中文来做 fine-tune。实际上这个想法已经在开源社区已经有人实现了。

第二步:训练并 apply LoRA

在第一步准备的数据集上进行 fine-tune。

第三步:合并模型(可选)

合并 LoRA 与 base 可以加速推理,并帮助我们后续 Quantization 模型。

第四步:quantization(可选)

最后,Quantization 可以帮助我们加速模型推理,并减少推理所需内存。这方面也有开源的工具可以直接使用。

https://github.com/megvii-research/Sparsebit/blob/main/large_language_models/llama/quantization/README.md

实践

柿子挑软的捏,我们从简单的目标开始:让模型讲中文。

为了达成这个目标,我使用的数据集是 Luotuo 作者翻译的 Alpaca 数据集,训练代码主要来自 Alpaca-LoRA。

准备

由于我打算直接使用 Alpaca-LoRA 的代码,我们先 clone Alpaca-LoRA:

git clone git@github.com:tloen/alpaca-lora.git

下载数据集:

wget https://github.com/LC1332/Chinese-alpaca-lora/blob/main/data/trans_chinese_alpaca_data.json

创建虚拟环境并安装依赖(需要根据不同环境的 cuda 版本调整):

conda create -n alpaca python=3.9
conda activate alpaca
cd alpaca-lora
pip install -r requirements.txt

训练

单卡选手很简单,可以直接执行:

python finetune.py \
--base_model 'decapoda-research/llama-7b-hf' \
--data_path '/path/to/trans_chinese_alpaca_data.json' \
--output_dir './lora-alpaca-zh'

双卡选手相对比较麻烦,需要执行:

WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun \
--nproc_per_node=2 \
--master_port=1234 \
finetune.py \
--base_model 'decapoda-research/llama-7b-hf' \
--data_path '/path/to/trans_chinese_alpaca_data.json' \
--output_dir './lora-alpaca-zh'

在我的环境下(2 * RTX 3090 Ti 24GB),需要额外配置 micro_batch_size 避免 OOM。

--micro_batch_size 2

推荐的其他额外参数:

--num_epochs 2

训练的过程比较稳定,我在训练过程中一直在用 nvitop 查看显存和显卡的用量:

下面是我训练时模型收敛的情况,可以看到差不多 2 epochs 模型就收敛的差不多了:

推理

单卡选手可以直接执行:

python generate.py --base_model "decapoda-research/llama-7b-hf" \
--lora_weights './lora-alpaca-zh' \
--load_8bit

双卡选手还是会麻烦点,由于现在还不支持双卡推理,我手动修改了 generate.py,添加了第 47 行:

而后,执行上面的命令即可。

如果你的推理运行在服务器上,想要通过其他终端访问,可以给 launch 方法添加参数:

server_name="0.0.0.0"

此时打开浏览器,享受你的工作成果吧 :D

加速推理

Alpaca-LoRA 提供了一些脚本,如 export_hf_checkpoint.py 来合并模型。合并后的模型可以通过 llamap.cpp 等项目达到更好的推理性能。

测试

最后,让我们对比下原生 Alpaca 与自己 fine-tune 的 Alpaca,看看 fine-tune 到底有没有让模型学会讲中文吧!

Good Examples

Bad Examples

可以看出模型确实在讲中文,也能依据中文的指令和输入完成一些工作。但是由于 LLaMA 本身训练数据大部分为英文以及 Alpaca 数据集翻译后的质量不足,我们的模型有些时候效果不如原生 Alpaca。此时不得不感叹高质量数据对 LLM 的重要性

总结

作为一个分布式系统方向的工程师,fine-tune 一个 LLM 的过程遇到了不少问题,也有很多乐趣。虽然 LLaMA 7B 展现出的能力还比较有限,我还是很期待后面开源社区进一步的工作。

后续我也打算尝试 fine-tune 特定目的的 LLM,比如让 LLM 教我做饭,感兴趣的朋友可以保持关注!

文章目录
  1. 1. 为什么要训练自己的 ChatGPT ?
  • 计划
    1. 1. 第一步:准备数据集
    2. 2. 第二步:训练并 apply LoRA
    3. 3. 第三步:合并模型(可选)
    4. 4. 第四步:quantization(可选)
  • 实践
    1. 1. 准备
    2. 2. 训练
    3. 3. 推理
  • 加速推理
  • 测试
  • 总结