⭐⭐⭐ Spring Boot 项目实战 ⭐⭐⭐ Spring Cloud 项目实战
《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 开源中国 「姜亚华」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注**微信公众号:【芋道源码】**有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

在往期的文章中,给大家分享了内核中的重要功能 —— 容器底层 cgroup 的相关知识,不少读者表示内核实在太高深,代码也较难理解。本期内容我们将站在非内核开发者的角度,给大家介绍应用和系统工程师如何梳理 Linux 内核代码

Java 离内核有多远?

测试环境版本信息:

玩内核的人怎么也懂 Java?这主要得益于我学校的 Java 课程和毕业那会在华为做 Android 手机的经历,几个模块从 APP/Framework/Service/HAL/Driver 扫过一遍,自然对 Java 有所了解。

每次提起 Java,我都会想到一段有趣的经历。刚毕业到部门报到第一个星期,部门领导(在华为算是 Manager)安排我们熟悉 Android。我花了几天写了个 Android 游戏,有些类似连连看那种。开周会的时候,领导看到我的演示后,一脸不悦,质疑我的直接领导(在华为叫 PL,Project Leader)没有给我们讲明白部门的方向。

emm,我当时确实没明白所谓的熟悉 Android 是该干啥,后来 PL 说,是要熟悉 xxx 模块,APP 只是其中一部分。话说如果当时得到的是肯定,也许我现在就是一枚 Java 工程师了(哈哈手动狗头)。

从 launcher 说起

世界上最远的距离,是咱俩坐隔壁,我在看底层协议,而你在研究 spring……如果想拉近咱俩的距离,先下载 openjdk 源码,然后下载 glibc,再下载内核源码。

Java 程序到 JVM,这个大家肯定比我熟悉,就不班门弄斧了。

我们就从 JVM 的入口为例,分析 JVM 到内核的流程,入口就是 main 函数了(java.base/share/native/launcher/main.c):

JNIEXPORT int
main(int argc, char **argv)
{
//中间省略一万行参数处理代码
return JLI_Launch(margc, margv,
jargc, (const char**) jargv,
0, NULL,
VERSION_STRING,
DOT_VERSION,
(const_progname != NULL) ? const_progname : *margv,
(const_launcher != NULL) ? const_launcher : *margv,
jargc > 0,
const_cpwildcard, const_javaw, 0);
}

JLI_Launch 做了三件我们关心的事。

首先,调用 CreateExecutionEnvironment 查找设置环境变量,比如 JVM 的路径(下面的变量 jvmpath),以我的平台为例,就是 /usr/lib/jvm/java-14-openjdk-amd64/lib/server/libjvm.so,window 平台可能就是 libjvm.dll。

其次,调用 LoadJavaVM 加载 JVM,就是 libjvm.so 文件,然后找到创建 JVM 的函数赋值给 InvocationFunctions 的对应字段:

jboolean LoadJavaVM(const char *jvmpath, InvocationFunctions *ifn)
{
void *libjvm;
//省略出错处理
libjvm = dlopen(jvmpath, RTLD_NOW + RTLD_GLOBAL);
ifn->CreateJavaVM = (CreateJavaVM_t)
dlsym(libjvm, "JNI_CreateJavaVM");
ifn->GetDefaultJavaVMInitArgs = (GetDefaultJavaVMInitArgs_t)
dlsym(libjvm, "JNI_GetDefaultJavaVMInitArgs");
ifn->GetCreatedJavaVMs = (GetCreatedJavaVMs_t)
dlsym(libjvm, "JNI_GetCreatedJavaVMs");
return JNI_TRUE;
}

dlopen 和 dlsym 涉及动态链接,简单理解就是 libjvm.so 包含 JNI_CreateJavaVM、JNI_GetDefaultJavaVMInitArgs 和 JNI_GetCreatedJavaVMs 的定义,动态链接完成后,ifn->CreateJavaVM、ifn->GetDefaultJavaVMInitArgs 和 ifn->GetCreatedJavaVMs 就是这些函数的地址。

不妨确认下 libjvm.so 有这三个函数。

objdump -D /usr/lib/jvm/java-14-openjdk-amd64/lib/server/libjvm.so | grep -E
"CreateJavaVM|GetDefaultJavaVMInitArgs|GetCreatedJavaVMs" | grep ":$"
00000000008fa9d0 <JNI_GetDefaultJavaVMInitArgs@@SUNWprivate_1.1>:
00000000008faa20 <JNI_GetCreatedJavaVMs@@SUNWprivate_1.1>:
00000000009098e0 <JNI_CreateJavaVM@@SUNWprivate_1.1>:

openjdk 源码里有这些实现的(hotspot/share/prims/下),有兴趣的同学可以继续钻研。

最后,调用 JVMInit 初始化 JVM,load Java 程序。

JVMInit 调用 ContinueInNewThread,后者调用 CallJavaMainInNewThread。插一句,我是真的不喜欢按照函数调用的方式讲述问题,a 调用 b,b 又调用 c,简直是在浪费篇幅,但是有些地方跨度太大又怕引起误会(尤其对初学者而言)。相信我,注水,是真没有,我不需要经验+3 哈哈。

CallJavaMainInNewThread 的主要逻辑如下:

int CallJavaMainInNewThread(jlong stack_size, void* args) {
int rslt;
pthread_t tid;
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
if (stack_size > 0) {
pthread_attr_setstacksize(&attr, stack_size);
}
pthread_attr_setguardsize(&attr, 0); // no pthread guard page on java threads
if (pthread_create(&tid, &attr, ThreadJavaMain, args) == 0) {
void* tmp;
pthread_join(tid, &tmp);
rslt = (int)(intptr_t)tmp;
}
else {
rslt = JavaMain(args);
}
pthread_attr_destroy(&attr);
return rslt;
}

看到 pthread_create 了吧,破案了,Java 的线程就是通过 pthread 实现的。此处就可以进入内核了,但是我们还是先继续看看 JVM。ThreadJavaMain 直接调用了 JavaMain,所以这里的逻辑就是,如果创建线程成功,就由新线程执行 JavaMain,否则就知道在当前进程执行JavaMain。

JavaMain 是我们关注的重点,核心逻辑如下:

int JavaMain(void* _args)
{
JavaMainArgs *args = (JavaMainArgs *)_args;
int argc = args->argc;
char **argv = args->argv;
int mode = args->mode;
char *what = args->what;
InvocationFunctions ifn = args->ifn;
JavaVM *vm = 0;
JNIEnv *env = 0;
jclass mainClass = NULL;
jclass appClass = NULL; // actual application class being launched
jmethodID mainID;
jobjectArray mainArgs;
int ret = 0;
jlong start, end;
/* Initialize the virtual machine */
if (!InitializeJVM(&vm, &env, &ifn)) { //1
JLI_ReportErrorMessage(JVM_ERROR1);
exit(1);
}
mainClass = LoadMainClass(env, mode, what); //2
CHECK_EXCEPTION_NULL_LEAVE(mainClass);
mainArgs = CreateApplicationArgs(env, argv, argc);
CHECK_EXCEPTION_NULL_LEAVE(mainArgs);
mainID = (*env)->GetStaticMethodID(env, mainClass, "main",
"([Ljava/lang/String;)V"); //3
CHECK_EXCEPTION_NULL_LEAVE(mainID);
/* Invoke main method. */
(*env)->CallStaticVoidMethod(env, mainClass, mainID, mainArgs); //4
ret = (*env)->ExceptionOccurred(env) == NULL ? 0 : 1;
LEAVE();
}

第 1 步,调用 InitializeJVM 初始化 JVM。InitializeJVM 会调用 ifn->CreateJavaVM,也就是libjvm.so 中的 JNI_CreateJavaVM。

第 2 步,LoadMainClass,最终调用的是 JVM_FindClassFromBootLoader,也是通过动态链接找到函数(定义在 hotspot/share/prims/ 下),然后调用它。

第 3 和第 4 步,Java 的同学应该知道,这就是调用 main 函数。

有点跑题了……我们继续以 pthread_create 为例看看内核吧。

其实,pthread_create 离内核还有一小段距离,就是 glibc(nptl/pthread_create.c)。创建线程最终是通过 clone 系统调用实现的,我们不关心 glibc 的细节(否则又跑偏了),就看看它跟直接 clone 的不同。

以下关于线程的讨论从书里摘抄过来。

const int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SYSVSEM
| CLONE_SIGHAND | CLONE_THREAD
| CLONE_SETTLS | CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID
| 0);
__clone (&start_thread, stackaddr, clone_flags, pd, &pd->tid, tp, &pd->tid);

各个标志的说明如下表(这句话不是摘抄的。。。)。

与当前进程共享 VM、共享文件系统信息、共享打开的文件……看到这些我们就懂了,所谓的线程是这么回事。

Linux 实际上并没有从本质上将进程和线程分开,线程又被称为轻量级进程(Low Weight Process, LWP),区别就在于线程与创建它的进程(线程)共享内存、文件等资源。

完整的段落如下(双引号扩起来的几个段落),有兴趣的同学可以详细阅读:

fork 传递至 _do_fork 的 clone_flags 参数是固定的,所以它只能用来创建进程,内核提供了另一个系统调用 clone,clone 最终也调用 _do_fork 实现,与 fork 不同的是用户可以根据需要确定 clone_flags,我们可以使用它创建线程,如下(不同平台下 clone 的参数可能不同):

SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
int __user *, parent_tidptr, int, tls_val, int __user *, child_tidptr)
{
return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
}

Linux 将线程当作轻量级进程,但线程的特性并不是由 Linux 随意决定的,应该尽量与其他操作系统兼容,为此它遵循 POSIX 标准对线程的要求。所以,要创建线程,传递给 clone 系统调用的参数也应该是基本固定的。

创建线程的参数比较复杂,庆幸的是 pthread(POSIX thread)为我们提供了函数,调用pthread_create 即可,函数原型(用户空间)如下。

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

第一个参数 thread 是一个输出参数,线程创建成功后,线程的 id 存入其中,第二个参数用来定制新线程的属性。新线程创建成功会执行 start_routine 指向的函数,传递至该函数的参数就是arg。

pthread_create 究竟如何调用 clone 的呢,大致如下:

//来源: glibc
const int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SYSVSEM
| CLONE_SIGHAND | CLONE_THREAD
| CLONE_SETTLS | CLONE_PARENT_SETTID
| CLONE_CHILD_CLEARTID
| 0);
__clone (&start_thread, stackaddr, clone_flags, pd, &pd->tid, tp, &pd->tid);

clone_flags 置位的标志较多,前几个标志表示线程与当前进程(有可能也是线程)共享资源,CLONE_THREAD 意味着新线程和当前进程并不是父子关系。

clone 系统调用最终也通过 _do_fork 实现,所以它与创建进程的 fork 的区别仅限于因参数不同而导致的差异,有以下两个疑问需要解释。

首先,vfork 置位了 CLONE_VM 标志,导致新进程对局部变量的修改会影响当前进程。那么同样置位了 CLONE_VM 的 clone,也存在这个隐患吗?答案是没有,因为新线程指定了自己的用户栈,由 stackaddr 指定。copy_thread 函数的 sp 参数就是 stackaddr,childregs->sp = sp 修改了新线程的 pt_regs,所以新线程在用户空间执行的时候,使用的栈与当前进程的不同,不会造成干扰。那为什么 vfork 不这么做,请参考 vfork 的设计意图。

其次,fork 返回了两次,clone 也是一样,但它们都是返回到系统调用后开始执行,pthread_create 如何让新线程执行 start_routine 的?start_routine 是由 start_thread 函数间接执行的,所以我们只需要清楚 start_thread 是如何被调用的。start_thread 并没有传递给 clone 系统调用,所以它的调用与内核无关,答案就在 __clone 函数中。

为了彻底明白新进程是如何使用它的用户栈和 start_thread 的调用过程,有必要分析 __clone 函数了,即使它是平台相关的,而且还是由汇编语言写的。

/*i386*/
ENTRY (__clone)
movl $-EINVAL,%eax
movl FUNC(%esp),%ecx /* no NULL function pointers */
testl %ecx,%ecx
jz SYSCALL_ERROR_LABEL
movl STACK(%esp),%ecx /* no NULL stack pointers */ //1
testl %ecx,%ecx
jz SYSCALL_ERROR_LABEL
andl $0xfffffff0, %ecx /*对齐*/ //2
subl $28,%ecx
movl ARG(%esp),%eax /* no negative argument counts */
movl %eax,12(%ecx)
movl FUNC(%esp),%eax
movl %eax,8(%ecx)
movl $0,4(%ecx)
pushl %ebx //3
pushl %esi
pushl %edi
movl TLS+12(%esp),%esi //4
movl PTID+12(%esp),%edx
movl FLAGS+12(%esp),%ebx
movl CTID+12(%esp),%edi
movl $SYS_ify(clone),%eax
movl %ebx, (%ecx) //5
int $0x80 //6
popl %edi //7
popl %esi
popl %ebx
test %eax,%eax //8
jl SYSCALL_ERROR_LABEL
jz L(thread_start)
ret //9
L(thread_start): //10
movl %esi,%ebp /* terminate the stack frame */
testl $CLONE_VM, %edi
je L(newpid)
L(haspid):
call *%ebx
/*…*/

以 __clone (&start_thread, stackaddr, clone_flags, pd, &pd->tid, tp, &pd->tid) 为例,

FUNC(%esp) 对应 &start_thread,

STACK(%esp) 对应 stackaddr,

ARG(%esp) 对应 pd(新进程传递给 start_thread 的参数)。

  • 第 1 步,将新进程的栈 stackaddr 赋值给 ecx,确保它的值不为 0。
  • 第 2 步,将 pd、&start_thread 和 0 存入新线程的栈,对当前进程的栈无影响。
  • 第 3 步,将当前进程的三个寄存器的值入栈,esp寄存器的值相应减12。
  • 第 4 步,准备系统调用,其中将 FLAGS+12(%esp) 存入 ebx,对应 clone_flags,将clone 的系统调用号存入 eax。
  • 第 5 步,将 clone_flags 存入新进程的栈中。
  • 第 6 步,使用 int 指令发起系统调用,交给内核创建新线程。截止到此处,所有的代码都是当前进程执行的,新线程并没有执行。
  • 从第 7 步开始的代码,当前进程和新线程都会执行。对当前进程而言,程序将它第 3 步入栈的寄存器出栈。但对新线程而言,它是从内核的 ret_from_fork 执行的,切换到用户态后,它的栈已经成为 stackaddr 了,所以它的 edi 等于 clone_flags,esi 等于 0,ebx 等于&start_thread。
  • 系统调用的结果由 eax 返回,第 8 步判断 clone 系统调用的结果,对当前进程而言,clone 系统调用如果成功返回的是新线程在它的 pid namespace 中的 id,大于 0,所以它执行 ret 退出 __clone 函数。对新线程而言,clone 系统调用的返回值等于 0,所以它执行L(thread_start) 处的代码。clone_flags 的 CLONE_VM 标志被置位的情况下,会执行 call %ebx,ebx 等于 &start_thread,至此 start_thread 得到了执行,它又调用了提供给pthread_create 的 start_routine,结束。*

如此看来,Java JVM glibc 内核,好像也没有多远。

作者介绍

姜亚华,《精通 Linux 内核——智能设备开发核心技术》的作者,一直从事与 Linux 内核和 Linux 编程相关的工作,研究内核代码十多年,对多数模块的细节如数家珍。曾负责华为手机 Touch、Sensor 的驱动和软件优化(包括 Mate、荣耀等系列),以及 Intel 安卓平台 Camera 和 Sensor 的驱动开发(包括 Baytrail、Cherrytrail、Cherrytrail CR、Sofia 等)。现负责 DMA、Interrupt、Semaphore 等模块的优化与验证(包括 Vega、Navi 系列和多款 APU 产品)。

文章目录
  1. 1. Java 离内核有多远?
    1. 1.0.1. 从 launcher 说起