《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 kaito-kidd.com/2020/07/02/redis-sentinel/ 「Kaito」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注**微信公众号:【芋道源码】**有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

这篇文章,我们来看Redis是如何实现故障自动恢复的,它的实现正是要基于之前所讲的数据持久化和数据多副本而做的。

Redis作为非常火热的内存数据库,其除了具有非常高的性能之外,还需要保证高可用,在故障发生时,尽可能地降低故障带来的影响,Redis也提供了完善的故障恢复机制:哨兵。

下面就来具体来看看Redis的故障恢复是如何做的,以及其中的原理。

部署模式

Redis在部署时,可以采用多种方式部署,每种部署方式对应不同的可用级别。

单节点部署:只有一个节点提供服务,读写均在此节点,此节点宕机则数据全部丢失,直接影响业务。

master-slave方式部署:两个节点组成master-slave模式,在master上写入,slave上读取,读写分离提高访问性能,master宕机后,需要手动把slave提升为master,业务影响程度取决于手动提升master的延迟。

master-slave+哨兵方式部署:master-slave与上述相同,不同的是增加一组哨兵节点,用于实时检查master的健康状态,在master宕机后自动提升slave为新的master,最大程度降低不可用的时间,对业务影响时间较短。

从上面几种部署模式可以看出,提高Redis可用性的关键是:多副本部署 + 自动故障恢复,而多副本正是依赖主从复制。

高可用做法

Redis原生提供master-slave数据复制,保证slave永远与master数据保持一致。

在master发生问题时,我们需要把slave提升为master,继续提供服务。而这个提升新master的操作,如果是人工处理,必然无法保证及时性,所以Redis提供了哨兵节点,用来管理master-slave节点,并在master发生问题时,能够自动进行故障恢复操作。

整个故障恢复的工作,正是Redis哨兵自动完成的。

哨兵介绍

哨兵是Redis高可用的解决方案,它是一个管理多个Redis实例的服务工具,可以实现对Redis实例的监控、通知、自动故障转移。

在部署哨兵时,我们只需要在配置文件中配置需要管理的master节点,哨兵节点就可以根据配置,对Redis节点进行管理,实现高可用。

一般我们需要部署多个哨兵节点,这是因为在分布式场景下,要想确定某个机器的某个节点上否发生故障,只用一台机器去检测可能是不准确的,很有可能这两台机器的网络发生了故障,而节点本身并没有问题。

所以对于节点健康检测的场景,一般都会采用多个节点同时去检测,且多个节点分布在不同机器上,节点数量为奇数个,避免因为网络分区导致哨兵决策错误。这样多个哨兵节点互相交换检测信息,最终决策才能确认某个节点上否真正发生了问题。

哨兵节点部署并配置完成后,哨兵就会自动地对配置的master-slave进行管理,在master发生故障时,及时地提升slave为新的master,保证可用性。

那么它的工作原理上怎样的呢?

哨兵工作原理

哨兵的工作流程主要分为以下几个阶段:

  • 状态感知
  • 心跳检测
  • 选举哨兵领导者
  • 选择新的master
  • 故障恢复
  • 客户端感知新master

下面对这些阶段进行详细的介绍。

状态感知

哨兵启动后只指定了master的地址,哨兵要想在master故障时进行故障恢复,就需要知道每个master对应的slave信息。每个master可能不止一个slave,因此哨兵需要知道整个集群中完整的的拓扑关系,如何拿到这些信息?

哨兵每隔10秒会向每个master节点发送info命令,info命令返回的信息中,包含了主从拓扑关系,其中包括每个slave的地址和端口号。有了这些信息后,哨兵就会记住这些节点的拓扑信息,在后续发生故障时,选择合适的slave节点进行故障恢复。

哨兵除了向master发送info之外,还会向每个master节点特殊的pubsub中发送master当前的状态信息和哨兵自身的信息,其他哨兵节点通过订阅这个pubsub,就可以拿到每个哨兵发来的信息。

这么做的目的主要有2个:

  • 哨兵节点可以发现其他哨兵的加入,进而方便多个哨兵节点通信,为后续共同协商提供基础
  • 与其他哨兵节点交换master的状态信息,为后续判断master是否故障提供依据

心跳检测

在故障发生时,需要立即启动故障恢复机制,那么如何保证及时性呢?

每个哨兵节点每隔1秒向master、slave、其他哨兵节点发送ping命令,如果对方能在指定时间内响应,说明节点健康存活。如果未在规定时间内(可配置)响应,那么该哨兵节点认为此节点主观下线。

为什么叫做主观下线?

因为当前哨兵节点探测对方没有得到响应,很有可能这两个机器之间的网络发生了故障,而master节点本身没有任何问题,此时就认为master故障是不正确的。

要想确认master节点是否真正发生故障,就需要多个哨兵节点共同确认才行。

每个哨兵节点通过向其他哨兵节点询问此master的状态,来共同确认此节点上否真正故障。

如果超过指定数量(可配置)的哨兵节点都认为此节点主观下线,那么才会把这个节点标记为客观下线。

选举哨兵领导者

确认这个节点真正故障后,就需要进入到故障恢复阶段。如何进行故障恢复,也需要经历一系列流程。

首先需要选举出一个哨兵领导者,由这个专门的哨兵领导者来进行故障恢复操作,不用多个哨兵都参与故障恢复。选举哨兵领导者的过程,需要多个哨兵节点共同协商来选出。

这个选举协商的过程,在分布式领域中叫做达成共识,协商的算法叫做共识算法。

共识算法主要为了解决在分布式场景下,多个节点如何针对某一个场景达成一致的结果。

共识算法包括很多种,例如Paxos、Raft、Gossip算法等,感兴趣的同学可以自行搜索相关资料,这里不再展开来讲。

哨兵选举领导者的过程类似于Raft算法,它的算法足够简单易理解。

简单来讲流程如下:

  • 每个哨兵都设置一个随机超时时间,超时后向其他哨兵发送申请成为领导者的请求
  • 其他哨兵只能对收到的第一个请求进行回复确认
  • 首先达到多数确认选票的哨兵节点,成为领导者
  • 如果在确认回复后,所有哨兵都无法达到多数选票的结果,那么进行重新选举,直到选出领导者为止

选择出哨兵领导者后,之后的故障恢复操作都由这个哨兵领导者进行操作。

搜索公众号程序猿DD,回复“资源”,送你我精心整理的独家学习资料!

选择新的master

哨兵领导者针对发生故障的master节点,需要在它的slave节点中,选择一个节点来代替其工作。

这个选择新master过程也是有优先级的,在多个slave的场景下,优先级按照:slave-priority配置 > 数据完整性 > runid较小者进行选择。

也就是说优先选择slave-priority最小值的slave节点,如果所有slave此配置相同,那么选择数据最完整的slave节点,如果数据也一样,最后选择runid较小的slave节点。

提升新的master

经过优先级选择,选出了备选的master节点后,下一步就是要进行真正的主从切换了。

哨兵领导者给备选的master节点发送slaveof no one命令,让该节点成为master。

之后,哨兵领导者会给故障节点的所有slave发送slaveof $newmaster命令,让这些slave成为新master的从节点,开始从新的master上同步数据。

最后哨兵领导者把故障节点降级为slave,并写入到自己的配置文件中,待这个故障节点恢复后,则自动成为新master节点的slave。

至此,整个故障切换完成。

客户端感知新master

最后,客户端如何拿到最新的master地址呢?

哨兵在故障切换完成之后,会向自身节点的指定pubsub中写入一条信息,客户端可以订阅这个pubsub来感知master的变化通知。我们的客户端也可以通过在哨兵节点主动查询当前最新的master,来拿到最新的master地址。

另外,哨兵还提供了“钩子”机制,我们也可以在哨兵配置文件中配置一些脚本逻辑,在故障切换完成时,触发“钩子”逻辑,通知客户端发生了切换,让客户端重新在哨兵上获取最新的master地址。

一般来说,推荐采用第一种方式进行处理,很多客户端SDK中已经集成好了从哨兵节点获取最新master的方法,我们直接使用即可。

总结

可见,为了保证Redis的高可用,哨兵节点要准确无误地判断故障的发生,并且快速的选出新的节点来代替其提供服务,这中间的流程还是比较复杂的。

中间涉及到了分布式共识、分布式协商等知识,目的都是为了保证故障切换的准确性。

我们有必要了解Redis高可用的工作原理,这样我们在使用Redis时能更准确地使用它。

文章目录
  1. 1. 部署模式
  2. 2. 高可用做法
  3. 3. 哨兵介绍
  4. 4. 哨兵工作原理
    1. 4.0.1. 状态感知
    2. 4.0.2. 心跳检测
    3. 4.0.3. 选举哨兵领导者
    4. 4.0.4. 选择新的master
    5. 4.0.5. 提升新的master
    6. 4.0.6. 客户端感知新master
  • 5. 总结