《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 juejin.im/post/6844903701094596615 「何甜甜在吗」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注微信公众号:【芋道源码】有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

数据库中可以用datetime、bigint、timestamp来表示时间,那么选择什么类型来存储时间比较合适呢?

前期数据准备

通过程序往数据库插入50w数据

  • 数据表:
CREATE TABLE `users` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`time_date` datetime NOT NULL,
`time_timestamp` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
`time_long` bigint(20) NOT NULL,
PRIMARY KEY (`id`),
KEY `time_long` (`time_long`),
KEY `time_timestamp` (`time_timestamp`),
KEY `time_date` (`time_date`)
) ENGINE=InnoDB AUTO_INCREMENT=500003 DEFAULT CHARSET=latin1

其中time_long、time_timestamp、time_date为同一时间的不同存储格式

  • 实体类users
/**
* @author hetiantian
* @date 2018/10/21
* */
@Builder
@Data
public class Users {
/**
* 自增唯一id
* */
private Long id;

/**
* date类型的时间
* */
private Date timeDate;

/**
* timestamp类型的时间
* */
private Timestamp timeTimestamp;

/**
* long类型的时间
* */
private long timeLong;
}
  • dao层接口
/**
* @author hetiantian
* @date 2018/10/21
* */
@Mapper
public interface UsersMapper {
@Insert("insert into users(time_date, time_timestamp, time_long) value(#{timeDate}, #{timeTimestamp}, #{timeLong})")
@Options(useGeneratedKeys = true,keyProperty = "id",keyColumn = "id")
int saveUsers(Users users);
}
  • 测试类往数据库插入数据
public class UsersMapperTest extends BaseTest {
@Resource
private UsersMapper usersMapper;

@Test
public void test() {
for (int i = 0; i < 500000; i++) {
long time = System.currentTimeMillis();
usersMapper.saveUsers(Users.builder().timeDate(new Date(time)).timeLong(time).timeTimestamp(new Timestamp(time)).build());
}
}
}

生成数据代码方至github:https://github.com/TiantianUpup/sql-test/ 如果不想用代码生成,而是想通过sql文件倒入数据,附sql文件网盘地址:https://pan.baidu.com/s/1Qp9x6z8CN6puGfg-eNghig

sql查询速率测试

  • 通过datetime类型查询:
select count(*) from users where time_date >="2018-10-21 23:32:44" and time_date <="2018-10-21 23:41:22"

耗时:0.171

  • 通过timestamp类型查询
select count(*) from users where time_timestamp >= "2018-10-21 23:32:44" and time_timestamp <="2018-10-21 23:41:22"

耗时:0.351

  • 通过bigint类型查询
select count(*) from users where time_long >=1540135964091 and time_long <=1540136482372

耗时:0.130s

  • 结论 在InnoDB存储引擎下,通过时间范围查找,性能bigint > datetime > timestamp

sql分组速率测试

使用bigint 进行分组会每条数据进行一个分组,如果将bigint做一个转化在去分组就没有比较的意义了,转化也是需要时间的

  • 通过datetime类型分组:
select time_date, count(*) from users group by time_date

耗时:0.176s

  • 通过timestamp类型分组:
select time_timestamp, count(*) from users group by time_timestamp

耗时:0.173s

  • 结论 在InnoDB存储引擎下,通过时间分组,性能timestamp > datetime,但是相差不大

sql排序速率测试

  • 通过datetime类型排序:
select * from users order by time_date

耗时:1.038s

  • 通过timestamp类型排序
select * from users order by time_timestamp

耗时:0.933s

  • 通过bigint类型排序
select * from users order by time_long

耗时:0.775s

  • 结论 在InnoDB存储引擎下,通过时间排序,性能bigint > timestamp > datetime

小结

如果需要对时间字段进行操作(如通过时间范围查找或者排序等),推荐使用bigint,如果时间字段不需要进行任何操作,推荐使用timestamp,使用4个字节保存比较节省空间,但是只能记录到2038年记录的时间有限

文章目录
  1. 1. 前期数据准备
  2. 2. sql查询速率测试
  3. 3. sql分组速率测试
  4. 4. sql排序速率测试
  5. 5. 小结