⭐⭐⭐ Spring Boot 项目实战 ⭐⭐⭐ Spring Cloud 项目实战
《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 阿飞的博客 「飞哥」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注**微信公众号:【芋道源码】**有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

分布式一致性

想象一下,我们有一个单节点系统,且作为数据库服务器,然后存储了一个值(假设为X)。然后,有一个客户端往服务器发送了一个值(假设为8)。只要服务器接受到这个值即可,这个值在单节点上的一致性非常容易保证:

单机环境

但是,如果数据库服务器有多个节点呢?比如,如下图所示,有三个节点:a,b,c。这时候客户端对这个由3个节点组成的数据库集群进行操作时的值一致性如何保证,这就是分布式一致性问题。而Raft就是一种实现了分布式一致性的协议(还有其他一些一致性算法,例如:ZAB、PAXOS等): 分布式环境

一些概念

讲解Raft算法之前,先普及一些Raft协议涉及到的概念: term:任期,比如新的选举任期,即整个集群初始化时,或者新的Leader选举就会开始一个新的选举任期。 大多数:假设一个集群由N个节点组成,那么大多数就是至少N/2+1。例如:3个节点的集群,大多数就是至少2;5个节点的集群,大多数就是至少3。 状态:每个节点有三种状态,且某一时刻只能是三种状态中的一种:Follower(图左),Candidate(图中),Leader(图右)。假设三种状态不同图案如下所示: 节点状态图

初始化状态时,三个节点都是Follower状态,并且term为0,如下图所示: 初始化

Leader选举

Leader选举需要某个节点发起投票,在确定哪个节点向其他节点发起投票之前,每个节点会分配一个随机的选举超时时间(election timeout)。在这个时间内,节点必须等待,不能成为Candidate状态。现在假设节点a等待168ms , 节点b等待210ms , 节点c等待200ms 。由于a的等待时间最短,所以它会最先成为Candidate,并向另外两个节点发起投票请求,希望它们能选举自己为Leader: 发起投票请求

另外两个节点收到请求后,假设将它们的投票返回给Candidate状态节点a,节点a由于得到了大多数节点的投票,就会从Candidate变为Leader,如下图所示,这个过程就叫做Leader选举(Leader Election)。接下来,这个分布式系统所有的改变都要先经过节点a,即Leader节点: Leader节点

如果某个时刻,Follower不再收到Leader的消息,它就会变成Candidate。然后请求其他节点给他投票(类似拉票一样)。其他节点就会回复它投票结果,如果它能得到大多数节点的投票,它就能成为新的Leader。

日志复制

假设接下来客户端发起一个SET 5的请求,这个请求会首先由leader即节点a接收到,并且节点a写入一条日志。由于这条日志还没被其他任何节点接收,所以它的状态是uncommittedsc_20190511173101.png

为了提交这条日志,Leader会将这条日志通过心跳消息复制给其他的Follower节点: 日志复制

一旦有大多数节点成功写入这条日志,那么Leader节点的这条日志状态就会更新为committed状态,并且值更新为5: sc_20190511173806.png

Leader节点然后通知其他Follower节点,其他节点也会将值更新为5。如下图所示,这个时候集群的状态是完全一致的,这个过程就叫做日志复制(Log Replication): sc_20190511174011.png

两个超时

接下来介绍Raft中两个很重要的超时设置:选举超时和心跳超时。

  • 选举超时

为了防止3个节点(假设集群由3个节点组成)同时发起投票,会给每个节点分配一个随机的选举超时时间(Election Timeout),即从Follower状态成为Candidate状态需要等待的时间。在这个时间内,节点必须等待,不能成为Candidate状态。如下图所示,节点C优先成为Candidate,而节点A和B还在等待中: 选举超时

  • 心跳超时

如下图所示,节点A和C投票给了B,所以节点B是leader节点。节点B会固定间隔时间向两个Follower节点A和C发送心跳消息,这个固定间隔时间被称为heartbeat timeout。Follower节点收到每一条日志信息都需要向Leader节点响应这条日志复制的结果: 心跳超时

重新选举

选举过程中,如果Leader节点出现故障,就会触发重新选举。如下图所示,Leader节点B故障(灰色),这时候节点A和C就会等待一个随机时间(选举超时),谁等待的时候更短,谁就先成为Candidate,然后向其他节点发送投票请求: re-election

如果节点A能得得到节点C的投票,加上自己的投票,就有大多数选票。那么节点A将成为新的Leader节点,并且Term即任期的值加1更新到2: 新Leader节点

需要说明的是,每个选举期只会选出一个Leader。假设同一时间有两个节点成为Candidate(它们随机等待选举超时时间刚好一样),如下图所示,并且假设节点A收到了节点B的投票,而节点C收到了节点D的投票: 2个Candidate节点

这种情况下,就会触发一次新的选举,节点A和节点B又等待一个随机的选举超时时间,直到一方胜出: sc_20190511214801.png

我们假设节点A能得到大多数投票,那么接下来节点A就会成为新的Leader节点,并且任期term加1: sc_20190511215048.png

网络分区

在发生网络分区的时候,Raft一样能保持一致性。如下图所示,假设我们的集群由5个节点组成,且节点B是Leader节点: 5个节点的集群

我们假设发生了网络分区:节点A和B在一个网络分区,节点C、D和E在另一个网络分区,如下图所示,且节点B和节点C分别是两个网络分区中的Leader节点: 发生网络分区

我们假设还有一个客户端,并且往节点B上发送了一个SET 3,由于网络分区的原因,这个值不能被另一个网络分区中的Leader即节点C拿到,它最多只能被两个节点(节点B和C)感知到,所以它的状态是uncomitted(红色): 操作1

另一个客户端准备执行SET 8的操作,由于可以被同一个分区下总计三个节点(节点C、D和E)感知到,3个节点已经符合大多数节点的条件。所以,这个值的状态就是committed: 操作2

接下来,我们假设网络恢复正常,如下图所示。节点B能感知到C节点这个Leader的存在,它就会从Leader状态退回到Follower状态,并且节点A和B会回滚之前没有提交的日志(SET 3产生的uncommitted日志)。同时,节点A和B会从新的Leader节点即C节点获取最新的日志(SET 8产生的日志),从而将它们的值更新为8。如此以来,整个集群的5个节点数据完全一致了:

分区网络恢复

参考地址:http://thesecretlivesofdata.com/raft/

文章目录
  1. 1. 分布式一致性
  2. 2. 一些概念
  3. 3. Leader选举
  4. 4. 日志复制
  5. 5. 两个超时
  6. 6. 重新选举
  7. 7. 网络分区