扫码关注公众号:芋道源码

发送: 百事可乐
获取永久解锁本站全部文章的链接

《Dubbo 实现原理与源码解析 —— 精品合集》 《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》 《MyBatis 实现原理与源码解析 —— 精品合集》
《Spring MVC 实现原理与源码解析 —— 精品合集》 《数据库实体设计合集》
《Spring Boot 实现原理与源码解析 —— 精品合集》 《Java 面试题 + Java 学习指南》

摘要: 原创出处 http://www.cnblogs.com/liqiangchn/p/9060521.html 「浪人」欢迎转载,保留摘要,谢谢!


🙂🙂🙂关注微信公众号:【芋道源码】有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

看了很多关于索引的博客,讲的大同小异。但是始终没有让我明白关于索引的一些概念,如B-Tree索引,Hash索引,唯一索引….或许有很多人和我一样,没搞清楚概念就开始研究B-Tree,B+Tree等结构,导致在面试的时候答非所问!本文中有关存储引擎请查看MySQL存储引擎-InnoDB和MyISAM

索引是什么?

索引是帮助MySQL高效获取数据的数据结构。

索引能干什么?

提高数据查询的效率。

索引:排好序的快速查找数据结构!索引会影响where后面的查找,和order by 后面的排序。

一、索引的分类

1️⃣从存储结构上来划分:BTree索引(B-Tree或B+Tree索引),Hash索引,full-index全文索引,R-Tree索引。

2️⃣从应用层次来分:普通索引,唯一索引,复合索引

3️⃣根据中数据的物理顺序与键值的逻辑(索引)顺序关系:聚集索引,非聚集索引。

1️⃣中所描述的是索引存储时保存的形式,2️⃣是索引使用过程中进行的分类,两者是不同层次上的划分。不过平时讲的索引类型一般是指在应用层次的划分。

就像手机分类:安卓手机,IOS手机 与 华为手机,苹果手机,OPPO手机一样。

普通索引:即一个索引只包含单个列,一个表可以有多个单列索引

唯一索引:索引列的值必须唯一,但允许有空值

复合索引:即一个索引包含多个列

聚簇索引(聚集索引):并不是一种单独的索引类型,而是一种数据存储方式。具体细节取决于不同的实现,InnoDB的聚簇索引其实就是在同一个结构中保存了B-Tree索引(技术上来说是B+Tree)和数据行。

非聚簇索引:不是聚簇索引,就是非聚簇索引(认真脸)。

二、索引的底层实现

mysql默认存储引擎innodb只显式支持B-Tree( 从技术上来说是B+Tree)索引,对于频繁访问的表,innodb会透明建立自适应hash索引,即在B树索引基础上建立hash索引,可以显著提高查找效率,对于客户端是透明的,不可控制的,隐式的。

不谈存储引擎,只讨论实现(抽象)

Hash索引

基于哈希表实现,只有精确匹配索引所有列的查询才有效,对于每一行数据,存储引擎都会对所有的索引列计算一个哈希码(hash code),并且Hash索引将所有的哈希码存储在索引中,同时在索引表中保存指向每个数据行的指针。

img

B-Tree索引(MySQL使用B+Tree)

B-Tree能加快数据的访问速度,因为存储引擎不再需要进行全表扫描来获取数据,数据分布在各个节点之中。

img

B+Tree索引

是B-Tree的改进版本,同时也是数据库索引索引所采用的存储结构。数据都在叶子节点上,并且增加了顺序访问指针,每个叶子节点都指向相邻的叶子节点的地址。相比B-Tree来说,进行范围查找时只需要查找两个节点,进行遍历即可。而B-Tree需要获取所有节点,相比之下B+Tree效率更高。

img

结合存储引擎来讨论(一般默认使用B+Tree)

案例:假设有一张学生表,id为主键

id name birthday
1 Tom 1996-01-01
2 Jann 1996-01-04
3 Ray 1996-01-08
4 Michael 1996-01-10
5 Jack 1996-01-13
6 Steven 1996-01-23
7 Lily 1996-01-25

在MyISAM引擎中的实现(二级索引也是这样实现的)

img

在InnoDB中的实现

img

img

三、问题

问:为什么索引结构默认使用B-Tree,而不是hash,二叉树,红黑树?

hash:虽然可以快速定位,但是没有顺序,IO复杂度高。

二叉树:树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。

红黑树:树的高度随着数据量增加而增加,IO代价高。

问:为什么官方建议使用自增长主键作为索引。

结合B+Tree的特点,自增主键是连续的,在插入过程中尽量减少页分裂,即使要进行页分裂,也只会分裂很少一部分。并且能减少数据的移动,每次插入都是插入到最后。总之就是减少分裂和移动的频率。

插入连续的数据:

img

插入非连续的数据

img

文章目录
  1. 1. 一、索引的分类
  2. 2. 二、索引的底层实现
  3. 3. 三、问题